Elliptic problems involving an indefinite weight
نویسندگان
چکیده
منابع مشابه
Anti-maximum Principles for Indefinite-weight Elliptic Problems
λ0 = λ0(1, P, Ω) := sup{λ ∈ R : ∃u > 0 s.t. (P − λ)u ≥ 0 in Ω}, where 1 is the constant function on Ω, taking at any point x ∈ Ω the value 1. Using the Krein-Rutman theorem, the author proved in [13, 14] generalized maximum principles and anti-maximum principles (in brief, GMPs and AMPs, respectively) for the problem (P − λ)uλ = f 0 in Ω. (1.1) In particular, these GMPs and AMPs (without weight...
متن کاملAsymmetric Elliptic Problems with Indefinite Weights
– We prove the existence of a first nontrivial eigenvalue for an asymmetric elliptic problem with weights involving the laplacian (cf. (1.2) below) or more generally the p-laplacian (cf. (1.3) below). A first application is given to the description of the beginning of the Fučik spectrum with weights for these operators. Another application concerns the study of nonresonance for the problems (1....
متن کاملComplexity of Indefinite Elliptic Problems By Arthur
This paper deals with the approximate solution of a linear regularly-elliptic 2mth-order boundary-value problem Lu = f, with / 6 Hr(Q) for r > —m. Suppose that the problem is indefinite, i.e., the variational form of the problem involves a weaklycoercive bilinear form. Of particular interest is the quality of the finite element method (FEM) of degree k using n inner products of /. The error of ...
متن کاملCompact Embeddings and Indefinite Semilinear Elliptic Problems
Our purpose is to find positive solutions u ∈ D(R ) of the semilinear elliptic problem −∆u = h(x)u for 2 < p. The function h may have an indefinite sign. Key ingredients are a h-dependent concentration-compactness Lemma and a characterization of compact embeddings of D(R ) into weighted Lebesgue spaces.
متن کاملDomain Decomposition Algorithms for Indefinite Elliptic Problems
Iterative methods for linear systems of algebraic equations arising from the finite element discretization of nonsymmetric and indefinite elliptic problems are considered. Methods previously known to work well for positive definite, symmetric problems are extended to certain nonsymmetric problems, which can also have some eigenvalues in the left half plane. We first consider an additive Schwarz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1990
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1990-0962280-1